

QUÍMICA. OPCIÓN A

1. (2,5 puntos)

Las entalpías estándar de combustión del C(s), $H_2(g)$ y propano gas, $C_3H_8(g)$, son -394, -286 y -2220 kJ/mol, respectivamente:

i. Calcule la entalpía estándar de formación del propano.

(2,0 puntos)

ii. Calcule la variación de entalpía asociada a la formación de 100 g de propano gas en condiciones estándar. (0,5 puntos)

Datos: Masas atómicas C = 12 u; H = 1 u

2. (2,5 puntos)

Una disolución acuosa de NH₃ tiene un pH = 10,6.

i. Calcule la concentración inicial de NH₃, en moles/L.

(2,0 puntos)

ii. Calcule el volumen, en litros, de una disolución acuosa de NH₃ 0,1 M necesario para preparar, por dilución, 500 mL de la disolución del apartado anterior. (0,5 puntos)

Datos: $K_b(NH_3) = 1.8 \times 10^{-5}$

3. (1,0 punto)

En el laboratorio se desea realizar la deposición electrolítica de cobre a partir de una disolución acuosa de sulfato de cobre(II). Dibuje un esquema completo de la cuba electrolítica, indicando el material de laboratorio utilizado.

4. (2,0 puntos)

- A. Defina la afinidad electrónica de un átomo. Para los elementos X (Z=4) e Y (Z=8), escriba las configuraciones electrónicas respectivas e indique, de forma razonada, el que presenta el valor más negativo de la afinidad electrónica. (1,0 punto)
- B. Para la molécula BF₃: i) dibuje la estructura de Lewis; ii) deduzca y dibuje su forma geométrica e indique los ángulos de enlace aproximados de la molécula. (1,0 punto)
 Datos: B (Z = 5), F (Z = 9)

5. (2,0 puntos)

- A. Para la reacción en equilibrio: $4 \text{ HCl}(g) + O_2(g) \stackrel{\bullet}{=} 2 \text{ H}_2O(g) + 2 \text{ Cl}_2(g) \Delta H^o = -114 \text{ kJ}$. Explique el efecto que sobre la cantidad de $\text{Cl}_2(g)$ en el equilibrio tendrá:
 - i. La adición a la mezcla en equilibrio de una masa adicional de $O_2(g)$ a volumen constante. (0,5 puntos)
 - ii. Transferir la mezcla en equilibrio a un recipiente con un volumen doble, a la misma temperatura. (0,5 puntos)
- B. Complete la siguiente reacción. Nombre y escriba la fórmula semidesarrollada de los posibles productos de la reacción:

$$CH_2 = CH - CH_3 + H_2O \xrightarrow{H_2SO_4}$$
(1,0 punto)

PRUEBAS DE ACCESO A LA UNIVERSIDAD

Curso 2009-2010

QUÍMICA. OPCIÓN B

1. (2,5 puntos)

En un recipiente de 1,4 L se introduce 1,0 g de CO, 1,0 g de H₂O y 1,0 g de H₂, elevando la temperatura a 600 K y dejando que se alcance el equilibrio:

$$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$$

 $K_C = 23.2 \text{ a } 600 \text{ K}$

Calcule los gramos de CO₂(g) que habrá en la mezcla en equilibrio.

Datos: Masas atómicas C = 12 u; H = 1 u; O = 16 u

2. (2,5 puntos)

La celda voltáica que utiliza la reacción: $Fe(s) + 2 Fe^{3+}(ac) \longrightarrow 3 Fe^{2+}(ac)$, tiene un potencial estándar de celda igual a 1,21 V :

- i. Escriba las dos semirreacciones que tienen lugar en el ánodo y en el cátodo de la celda. Calcule E°(Fe³⁺/Fe²⁺). (1,25 puntos)
- ii. Dibuje un esquema de la celda voltáica, indicando el ánodo, el cátodo y el sentido de flujo de los electrones. **Nota**: utilice como electrodos láminas metálicas de hierro.

(1,25 puntos)

<u>Datos</u>: $E^{o}(Fe^{2+}/Fe) = -0.44 \text{ V}$

3. (1,0 punto)

En el laboratorio se dispone del dispositivo experimental necesario para determinar calores de reacción a presión constante. Describa el procedimiento a seguir para determinar el calor de la reacción ácido-base entre el hidróxido de sodio y el ácido clorhídrico.

4. (2,0 puntos)

- A. Indique, justificando la respuesta, el número de electrones desapareados que presentan en estado fundamental los átomos de P(Z = 15) y Mn (Z = 25). (1,0 punto)
- B. Los valores de los puntos de ebullición normales de los compuestos HF y HCl son 292,6 y 188,1 K, respectivamente. Explique la diferencia observada en estos valores de los puntos de ebullición normales. (1,0 punto)

5. (2,0 puntos)

- A. Dispone de disoluciones acuosas de las siguientes sustancias: NH₃, HCl, NaOH, KCN, NH₄Cl y CH₃COOH.
 - i. Indique, de forma razonada, las disoluciones que utilizaría para preparar una disolución reguladora. (0,5 puntos)
 - ii. Escriba y justifique la ecuación química que muestre cómo reacciona la disolución reguladora preparada cuando se le añade una pequeña cantidad de ácido fuerte. (0,5 puntos)
- B. Escriba la fórmula semidesarrollada de los siguientes compuestos:

i) 3,3,5-trimetilheptano

ii) cis-3-hexeno

iii) 4,4-dimetil-1-hexino

iv) 3-pentanona

(1,0 punto)

PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso 2009-2010

QUÍMICA. OPCIÓN A

Criterios específicos de corrección

Se dará la puntuación máxima cuando el ejercicio esté convenientemente razonado, con evidente manejo de los conceptos químicos y la solución numérica sea la correcta y con las unidades correspondientes. En cada apartado se trata de comprobar si los estudiantes son capaces de:

1. (2,5 puntos)

Utilizar y calcular entalpías de formación y hacer balances de materia y energía.

(2,5 puntos)

2. (2,5 puntos)

Aplicar la teoría de Brönsted y manejar los valores de las constantes de equilibrio. Calcular el pH en disoluciones de bases débiles. (2,0 puntos) Realizar cálculos estequiométricos. (0,5 puntos)

3. (1,0 punto)

Describir los elementos que intervienen en una célula electrolítica.

(1,0 punto)

4. (2,0 puntos)

- A. Aplicar los principios y reglas que permiten escribir estructuras electrónicas de átomos (0,25 puntos) y justificar, a partir de dichas estructuras electrónicas, la variación periódica de la afinidad electrónica en los elementos del segundo período de la tabla periódica. (0,75 puntos)
- B. Deducir la forma geométrica, indicando la forma y los ángulos de enlace de moléculas en las que el átomo central tenga hasta cuatro pares de electrones. (1,0 punto)

5. (2,0 puntos)

- A. Predecir, cualitativamente, aplicando el principio de Le Chatelier, la forma en la que evoluciona un sistema en equilibrio cuando se interacciona con él. (1,0 punto)
- B. Reconocer una reacción de adición y aplicarla a la obtención de un alcohol. (**0,5 puntos**) Formular o nombrar compuestos orgánicos oxigenados. (**0,5 puntos**)

QUÍMICA. OPCIÓN B

Criterios específicos de corrección

Se dará la puntuación máxima cuando el ejercicio esté convenientemente razonado, con evidente manejo de los conceptos químicos y la solución numérica sea la correcta y con las unidades correspondientes. En cada apartado se trata de comprobar si los estudiantes son capaces de:

1. (2,5 puntos)

Resolver ejercicios y problemas de equilibrios homogéneos en fase gaseosa (constantes de equilibrio K_c y K_p , concentraciones molares iniciales y en equilibrio). (2,5 puntos)

2. (2,5 puntos)

- i. Interpretar datos de potenciales estándar de reducción y utilizarlos para predecir el sentido de una reacción de oxidación-reducción. (1,25 puntos)
- ii. Describir los elementos e interpretar los procesos que ocurren en una celda voltaica.

(1,25 puntos)

3. (1,0 punto)

Determinar experimentalmente calores de reacción en una experiencia encaminada a determinar, de forma cuantitativa, el calor que se absorbe o desprende en una reacción ácido-base en medio acuoso entre NaOH y HCl a presión constante. (1,0 punto)

4. (2,0 puntos)

- A. Aplicar los principios y reglas que permiten escribir estructuras electrónicas de átomos hasta Z = 54. (1.0 punto)
- B. Utilizar la fortaleza de las fuerzas de Van der Waals y la capacidad de formar enlaces de hidrógeno para justificar la diferencia de puntos de ebullición normales de las sustancias.

(1,0 punto)

5. (2,0 puntos)

- A. Describir la composición de una disolución reguladora y explicar, cualitativamente, su funcionamiento en el control del pH. (1,0 punto)
- B. Formular hidrocarburos saturados e insaturados y compuestos orgánicos oxigenados. (1,0 punto)