Noticias

  • Consiguen prever si una mutación desestabilizará a las proteínas, clave para el diseño de fármacos

    11 de Febrero 2020

    Personal investigador de la Universidad de Oviedo y el Battelle Center for Mathematical Medicine ha desarrollo un algoritmo que predice la estabilidad de los polimorfismos genéticos, de la que depende el desarrollo de muchas enfermedades

    Óscar Álvarez y Juan Luis Fernández Martínez.

    El grupo de Problemas Inversos, Optimización y Aprendizaje Automático de la Universidad de Oviedo, dirigido por el profesor Juan Luis Fernández-Martínez, en colaboración con el profesor Andrzej Kloczkowski del Batelle Center of Mathematical Medicine, dependiente del Nationwide Children Hospital de Columbus (Ohio), ha desarrollado un algoritmo que permite discernir si una mutación en la cadena de aminoácidos de una proteína puede desestabilizarla y provocar enfermedades, superando la fiabilidad de los métodos existentes. El conocimiento de cómo de estable o inestable es dicho cambio (denominado polimorfismo) resulta un aspecto clave en el diseño de fármacos y en el estudio de numerosas enfermedades. Este trabajo forma parte de la tesis doctoral de Óscar Álvarez, que se desarrolla en el Departamento de Química Física y Analítica de la Universidad de Oviedo. Los resultados han visto la luz en la revista "Biomolecules".

    Las proteínas son moléculas formadas por cadenas de aminoácidos y resultan una pieza clave en el funcionamiento del organismo de los seres vivos. Con un reducido número de aminoácidos (solo 20 diferentes) se generan millones de proteínas, siendo su secuencia la que determina su estructura y sus funcionalidades. Las proteínas se sintetizan dependiendo de cómo están regulados los genes que las codifican.

    Entender cómo una o varias mutaciones afectan simultáneamente a las funcionalidades de una proteína es uno de los problemas abiertos en la genómica, puesto que una única sustitución en la cadena de aminoácidos puede generar efectos adversos. El desarrollo de muchas de las enfermedades depende de si dichas mutaciones desestabilizan a las proteínas, cambiando su estructura espacial. Predecir dicho cambio es, por tanto, un aspecto fundamental en el estudio de enfermedades y en la búsqueda de fármacos que permitan evitar dicho efecto.

    El estudio de enfermedades necesita no solo del conocimiento del genoma y de las posibles mutaciones de los genes de un individuo, sino además, de cómo impactan en la estabilidad de las proteínas que dichos genes codifican. Para ello, se han utilizado técnicas de aprendizaje automático por consenso. "Asumimos que las diferentes mutaciones tienen una curva característica de variaciones de energía. Estas curvas son aprendidas de diferentes bases de datos experimentales y son utilizadas posteriormente para predecir el efecto de nuevas mutaciones en una o varias posiciones. Según vayamos mejorando la base de datos del efecto de las mutaciones, el método diseñado aumentará su fiabilidad", afirma el profesor Fernández-Martínez. 

    En su día, el mismo grupo desarrolló un modelo para explicar cómo las principales mutaciones en enfermos con leucemia linfocítica crónica impactaban el transcriptoma (el conjunto de moléculas de ARN presentes en una célula), afectando a genes que regulan el sistema inmune. El profesor Fernández-Martínez y Óscar Álvarez explican que las técnicas que han utilizado en esta investigación "se basan en la utilización del consenso, es decir, se entrenan diferentes modelos de aprendizaje automático en paralelo, de tal forma que, al validar el método con datos independientes, no solo se obtiene el grado de desestabilización, sino que también es posible cuantificar la incertidumbre del mismo, utilizando un algoritmo de decisión por voto mayoritario. Estos métodos serán utilizados en el diseño óptimo de fármacos que se acoplarán a la proteína inhibiéndola".

    Este proyecto surgió en 2013 durante una visita del profesor Fernández-Martínez al centro Battelle de modelización matemática en medicina del hospital de Ohio, con el que el Grupo de Problemas Inversos de la Universidad de Oviedo posee una colaboración activa. Para el investigador, "la estructura de investigación bio-sanitaria en los hospitales de Estados Unidos es un modelo: ingenieros, físicos, matemáticos, biólogos, bioquímicos y médicos trabajando conjuntamente contra las enfermedades a nivel traslacional, es decir, produciendo resultados en el ordenador y en el laboratorio y llevándolos al hospital. Estamos a años luz, pero esta organización también se adoptará aquí, o el sistema de salud quedará desfasado", concluye.

    Referencia

    Álvarez-Machancoses, Ó.; DeAndrés-Galiana, E.J.; Fernández-Martínez, J.L.; Kloczkowski, A. Robust Prediction of Single and Multiple Point Protein Mutations Stability Changes. Biomolecules 2020, 10, 67.

    Imágenes:


Buscar